Close Tue: 13.3 (part 2)
Close Thu: 13.4, 14.1
Exam 1 will be returned Tuesday

13.3 Analyzing 3D Curves

Given $\boldsymbol{r}(t)=<x(t), y(t), z(t)>$
$s(t)=\int_{0}^{t}\left|\boldsymbol{r}^{\prime}(t)\right| d t=$ distance

Today we will also find the T, N and B vectors below (TNB Frame)

The curvature at a point, K, is a measure of how quickly a curve is changing direction at that point. That is, we define

$$
K=\frac{\text { change in direction }}{\text { change in distance }}
$$

Example: Find the curvature function for $\boldsymbol{r}(t)=\langle t, \cos (2 t), \sin (2 t)\rangle$.

$$
\begin{gathered}
\boldsymbol{r}^{\prime}(t)=\langle 1,-2 \sin (2 t), 2 \cos (2 t)\rangle \\
\boldsymbol{r}^{\prime \prime}(t)=\langle 0,-4 \cos (2 t), 4 \sin (2 t)\rangle
\end{gathered}
$$

Roughly, how much does your direction change if you move a small amount ("one inch") along the curve?

$$
\mathrm{K} \approx\left|\frac{\overrightarrow{\boldsymbol{T}_{2}}-\overrightarrow{\boldsymbol{T}_{1}}}{\text { "one inch" }}\right|=\left|\frac{\Delta \overrightarrow{\boldsymbol{T}}}{\Delta s}\right|
$$

$1^{\text {st }}$ shortcut:

$$
K(t)=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\left|\frac{d \overrightarrow{\boldsymbol{T}} / d t}{d s / d t}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}
$$

$2^{\text {nd }}$ shortcut

$$
K(t)=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\vec{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\mid}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t) \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{3}}
$$

$$
\left|\boldsymbol{r}^{\prime}(t)\right|=\sqrt{1+4 \sin ^{2}(2 t)+4 \cos ^{2}(2 t)}
$$

$$
\text { so }\left|\boldsymbol{r}^{\prime}(t)\right|=\sqrt{5}
$$

$$
\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)=\langle-8,-4 \sin (2 t),-4 \cos (2 t)\rangle
$$

$$
\text { So }\left|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right|=\sqrt{64+16}=\sqrt{80}
$$

$$
\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t) \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{3}}=\frac{\sqrt{80}}{\sqrt{5}^{3}}=\sqrt{\frac{80}{125}}=0.8
$$

This curve has constant curvature!

Proof of short cuts:

Lemma:

\boldsymbol{T} and \boldsymbol{T}^{\prime} are always orthogonal.
Proof of lemma:
Since $\boldsymbol{T} \cdot \boldsymbol{T}=|\boldsymbol{T}|^{2}=1$, we can differentiate both sides to get

$$
\boldsymbol{T}^{\prime} \cdot \boldsymbol{T}+\boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0
$$

So $2 \boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0$. Thus, $\boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0$. (QED)

Theorem: $\frac{\left|\boldsymbol{T}^{\prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|}=\frac{\left|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|^{3}}$

Proof of theorem:

Since $\boldsymbol{T}(t)=\frac{\boldsymbol{r}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}$, we have

$$
\boldsymbol{r}^{\prime}(t)=\left|\boldsymbol{r}^{\prime}(t)\right| \boldsymbol{T}(t)
$$

Differentiating this gives (prod. rule):

$$
\boldsymbol{r}^{\prime \prime}(t)=\left|\boldsymbol{r}^{\prime}(t)\right|^{\prime} \boldsymbol{T}(t)+\left|\boldsymbol{r}^{\prime}(t)\right| \boldsymbol{T}^{\prime}(t) . \quad \text { Since }|\boldsymbol{T}|=1, \text { we have }
$$

Take cross-prod. of both sides with $\overrightarrow{\boldsymbol{T}}$:
Taking the magnitude gives (why?)

$$
\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|}=\left|\boldsymbol{r}^{\prime}\right|\left|\boldsymbol{T} \times \boldsymbol{T}^{\prime}\right|=\left|\boldsymbol{r}^{\prime}\right||\boldsymbol{T}|\left|\boldsymbol{T}^{\prime}\right| \sin \left(\frac{\pi}{2}\right),
$$

$$
\left|\boldsymbol{T}^{\prime}\right|=\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|^{2}}
$$

$\boldsymbol{T} \times \boldsymbol{r}^{\prime \prime}=\left|\boldsymbol{r}^{\prime}\right|^{\prime}(\boldsymbol{T} \times \boldsymbol{T})+\left|\boldsymbol{r}^{\prime}\right|\left(\boldsymbol{T} \times \boldsymbol{T}^{\prime}\right)$. Therefore
Since $\boldsymbol{T} \times \boldsymbol{T}=<0,0,0>$ (why?)
and $\boldsymbol{T}=\frac{\boldsymbol{r}^{\prime}}{\left|\boldsymbol{r}^{\prime}\right|^{\prime}}$, we have

$$
\frac{\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}}{\left|\boldsymbol{r}^{\prime}\right|}=\left|\boldsymbol{r}^{\prime}\right|\left(\boldsymbol{T} \times \boldsymbol{T}^{\prime}\right)
$$

$$
K=\left|\frac{d \boldsymbol{T}}{d s}\right|=\frac{\left|\boldsymbol{T}^{\prime}(t)\right|}{\left|\boldsymbol{r}^{\prime}(t)\right|}=\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|^{3}}
$$

Note: To find curvature for a 2D
function, $y=f(x)$, we can form a 3D
vector function as follows

$$
\begin{aligned}
& \boldsymbol{r}(x)=\langle x, f(x), 0\rangle \\
& \text { so } \boldsymbol{r}^{\prime}(x)=\left\langle 1, f^{\prime}(x), 0\right\rangle \quad \text { and } \\
& \boldsymbol{r}^{\prime \prime}(x)=\left\langle 0, f^{\prime \prime}(x), 0\right\rangle \\
&\left|\boldsymbol{r}^{\prime}(x)\right|=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \\
& \boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}=\left\langle 0,0, f^{\prime \prime}(x)\right\rangle
\end{aligned}
$$

Thus,

$$
K(x)=\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|^{3}}=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}}
$$

Example:
Consider $x=t, y=t^{2}, z=0$.
At what point (x, y, z) is the
curvature maximum?

The TNB-Frame:

As we proved earlier,
$\overrightarrow{\boldsymbol{T}}^{\prime}(t)$ is always orthogonal to $\overrightarrow{\boldsymbol{T}}(t)$.
Not only is it orthogonal, it also points 'inwardly' relative to whichever way you are curving.

Thus, if we get the inward pointing unit vector by:

$$
\overrightarrow{\boldsymbol{N}}(t)=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}=\text { principal unit normal }
$$

We also define

$$
\overrightarrow{\boldsymbol{B}}(t)=\overrightarrow{\boldsymbol{T}}(t) \times \overrightarrow{\boldsymbol{N}}(t)=\text { binormal }
$$

Some TNB Facts:

- All have length one.
- We define the normal plane as parallel to $\overrightarrow{\boldsymbol{N}}(t)$ and $\overrightarrow{\boldsymbol{B}}(t)$ and is orthogonal to $\overrightarrow{\boldsymbol{T}}(t)$ (and $\overrightarrow{\boldsymbol{r}}^{\prime}(t)$).
- $\overrightarrow{\boldsymbol{T}}(t)$ and $\overrightarrow{\boldsymbol{N}}(t)$ point in the tangent and inward directions, respectively, so they give a good approximation of the "plane of motion". This "plane of motion" that goes through a point on the curve and is parallel to $\overrightarrow{\boldsymbol{T}}(t)$ and $\overrightarrow{\boldsymbol{N}}(t)$ is called the "osculating plane" ("osculating" means "kissing")
- $\overrightarrow{\boldsymbol{T}}(t), \overrightarrow{\boldsymbol{N}}(t), \overrightarrow{\boldsymbol{r}}^{\prime}(t)$, and $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$ are ALL parallel to the osculating plane.
- $\overrightarrow{\boldsymbol{B}}(t)$ is orthogonal to the osculating plane, it is also orthogonal to ALL the vectors

$$
\overrightarrow{\boldsymbol{T}}(t), \overrightarrow{\boldsymbol{N}}(t), \overrightarrow{\boldsymbol{r}}^{\prime}(t) \text {, and } \overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)
$$

Example:

$$
\overrightarrow{\boldsymbol{r}}(t)=<2 \sin (3 t), t, 2 \cos (3 t)\rangle
$$

Find

1. Find the normal plane at $t=\pi$.
2. $\overrightarrow{\boldsymbol{T}}(\pi)$
3. $\vec{N}(\pi)$
4. $\vec{B}(\pi)$
5. Find the osculating plane at $t=\pi$.

Summary of 3D Curve Measurement Tools:

Given $\overrightarrow{\boldsymbol{r}}(t)=\langle x(t), y(t), z(t)>$
$\overrightarrow{\boldsymbol{r}}^{\prime}(t)=$ a tangent vector
$s(t)=\int_{0}^{t}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| d t$
$K=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}}$

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\boldsymbol{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\text { unit tangent } \\
& \overrightarrow{\boldsymbol{N}}(t)=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}=\text { principal unit normal } \\
& \overrightarrow{\boldsymbol{B}}(t)=\overrightarrow{\boldsymbol{T}}(t) \times \overrightarrow{\boldsymbol{N}}(t)=\text { binormal }
\end{aligned}
$$

Tangent Line:

Through curve in direction of a tangent vector.

Normal Plane:

Through curve orthogonal to a tangent vector.

Osculating Plane:

Through curve parallel to both $\overrightarrow{\boldsymbol{r}}^{\prime}(t)$ and $\overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)$

